Towards a Holistic Understanding of Mathematical Questions with Contrastive Pre-training

Yuting Ning ${ }^{1,2}$, Zhenya Huang ${ }^{1,2}$, Xin Lin ${ }^{1,2}$, Enhong Chen ${ }^{1,2}$, Shiwei Tong ${ }^{1,2}$, Zheng Gong ${ }^{1,2}$, Shijin Wang ${ }^{2,3}$
${ }^{1}$ Anhui Province Key Lab. of Big Data Analysis and Application, University of Science and Technology of China,
${ }^{2}$ State Key Laboratory of Cognitive Intelligence, ${ }^{3}$ iFLYTEK AI Research (Central China), iFLYTEK Co., Ltd.

Introduction

Background

$>$ Online learning systems collect massive educational questions.
> Mathematical question understanding is a crucial but challenging issue in intelligent education field.
$>$ more difficult to understand with special components (e.g., formulas) and complex mathematical logic
$>$ require more domain knowledge for comprehensive understanding

Challenges

> Mathematical questions are more complex with special components (e.g., formulas), and require more mathematical knowledge and logic.
$>$ The holistic purposes of questions are more important than literal details.
$>$ Related knowledge concepts play an important, since they reflect the purposes and mathematical domain of questions.

Problem Definition

Mathematical Questions
$>$ consist of content and related knowledge concepts $\boldsymbol{q}=(\boldsymbol{x}, \boldsymbol{k})$
$>$ Question content: $\boldsymbol{x}=\left\{x_{1}, x_{2}, \ldots, x_{T}\right\}$
a sequence of tokens, where each token is a word or symbol
$>$ Related knowledge concepts: $\mathbf{k}=\left\{k_{1}, k_{2}, \ldots, k_{L}\right\}$
selected from a L-level knowledge hierarchy $K H=\{\mathcal{K}, \mathcal{E}\}$

Question Representation Problem

$>$ Given: mathematical question $\boldsymbol{q}=(\boldsymbol{x}, \boldsymbol{k})$
$>$ Goal: a d-dimensional vector $\boldsymbol{v} \in \mathbb{R}^{d}$
$>$ be transferred to several downstream tasks and benefit their performances
> capture latent purposes of questions
$>$ contain the rich information in question content and related knowledge concepts

QuesCo Framework

Main Idea

$>$ learn comprehensive question representations by pulling questions with more similar purposes closer than those with less similar purposes

Question Augmentation

> To learn latent purposes of mathematical questions, generate questions with similar holistic purposes but diverse literal details
> Two-level augmentation
$>$ Content-level
$>$ Text Augmentation + Formula Augmentation
$>$ Structure-level
> Structure Augmentation

Knowledge Hierarchy-Aware Rank

$>$ Exploit fine-grained similarities between questions based on the relationship of mathematical knowledge concepts
$>\mathrm{KH}$-distance

$$
k n d\left(q_{i}, q_{j}\right)= \begin{cases}L-u+1 & \text { if } \exists u \in\{1, \cdots, L\}, \\ L+1 & k_{v}^{u}=k_{j}^{u} \text { and } k_{i}^{k_{1}+1} \neq k_{j}^{u+1} \\ \text { if } \forall \ell \in\{1, \cdots, L\}, k_{i}^{u} \neq k_{j}^{\ell}\end{cases}
$$

$>$ Assign each question q_{i} in memory bank into one of $L+1$ ranks

$$
\begin{aligned}
& \qquad Q^{u}=\left\{\begin{array}{cl}
\left\{q^{+}\right\}, & u=0 \\
\{p \mid k h d(q, p)=u\}, & u \in\{1, \cdots, L+1\}
\end{array}\right. \\
& >\text { Similarity ranking } \quad h\left(q, q^{0}\right)>h\left(q, q^{1}\right)>\cdots>h\left(q, q^{L+1}\right), \forall q^{u} \in Q^{u},
\end{aligned}
$$

Pre-training

$>$ Ranking Info Noise Contrastive Estimation loss (RINCE)
$>$ gradually decreasing similarity with increasing rank of samples

$$
L_{\text {rank }}=\sum_{0}^{L} \ell_{i} \quad \ell_{i}=-\log \frac{\sum_{p \in Q^{i}} \exp \left(\frac{h(q, p)}{\tau_{i}}\right)}{\sum_{p \in \mathrm{U}_{j>i} Q^{j}} \exp \left(\frac{h(q, p)}{\tau_{j}}\right)}
$$

Experiments

Ablation Study

Tasks Datasets	$\begin{array}{\|c\|} \hline \text { Similarity Prediction } \\ \hline \text { SYSTEM2 } \\ \hline \end{array}$		Concept Prediction								Difficulty Estimation			
Metrics	Pearson	Spearman	leve	l-1	leve	l-2	leve	el-1	leve		MAE		PCC	
		Spearman	ACC	F1	ACC	F1	ACC	F1	ACC	F1				
Quesco	0.7385	0.7245	0.9176	0.8938	0.7857	0.5550	0.8340	0.7018	0.6719	0.3756	0.1778	0.2219	0.5623	0.6765
w/o AUG	0.7028	0.7213	0.9079	0.8770	0.7305	0.4497	0.8320	0.6972	0.6443	0.3412	0.2007	0.2482	0.3797	0.6204
w/o KHAR	0.5481	0.5057	0.8202	0.7160	0.6181	0.3416	0.7332	0.5996	0.5613	0.2746	0.1810	0.2248	0.5475	0.66

Model Analvsis

[^0]| Question | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Knowledge } \\ \text { Concept } \end{array} \\ \hline \end{array}$ | | ${ }_{\text {Simil- }}^{\text {arity }}$ |
| :---: | :---: | :---: | :---: |
| $Q_{1} \text { : Given that } \mathrm{x}=1.5^{-0.2}, \mathrm{y}=1.3^{0.7}, \mathrm{z}=\left(\frac{2}{3}\right)^{\frac{1}{3}} \text {. What }$
 is the relationship between the magnitude of $\mathrm{x}, \mathrm{y}, \mathrm{z}$? | $\begin{gathered} \text { Exponential } \\ \text { Function } \end{gathered}$ | | , |
| $\boldsymbol{Q}_{2} \text { : Given that } \mathrm{u}=1.5^{-0.2}, \mathrm{z}=\left(\frac{2}{3}\right)^{\frac{1}{3}}, \mathrm{y}=2.3^{0.7} \text {. What }$
 is the relationship between the magnitude of u, y, z ? | | | 0.96 |
| $Q_{3}: \text { If } f(x)=\mathrm{e}^{\mathrm{x}}-1, \mathrm{~g}(\mathrm{x})=-\mathrm{x}^{2}+4 \mathrm{x}-3 \text {, and } \mathrm{f}(\mathrm{a})=$
 $g(b)$. What the range of value of b ? | | | 0.70 |
| \boldsymbol{Q}_{4} : What is the domain of definition of the function $\mathrm{f}(\mathrm{x})=\ln \left(\mathrm{x}^{2}-\mathrm{x}\right) ?$ | $\begin{gathered} \text { Logarithmic } \\ \text { Function } \\ \hline \end{gathered}$ | 2 | 0.64 |
| $\boldsymbol{Q}_{5}: f(x)=\left(m^{2}-m-1\right) \cdot x^{m}(m \in R)$ is a power function and is increasing when $x \in(0,+\infty)$. What is the value of m ? | Power Function | 3 | 0.5 |
| Q_{6} : If 2 cards are randomly selected from a mixed deck (52 cards in total), what is the probability of "both are Hearts"? | Independence of Events | | 0.42 |

[^0]: Similarity Ranking Analysis: Relationship between khd and similarity.

